Regularization
Overfitting happens with excessive power, stochastic/deterministic noise, and limited data. Regularization is a way to prevent overfitting.
Named after the function approximation for ill-posed problems
. idea: ‘step back’ from H_10 to H_2.
hypothesis w in \(H_{10} = w_0 + w_1 x + w_2 x^2 + \cdots + w_{10} x^{10}\)
hypothesis w in \(H_2 = w_0 + w_1 x + w_2 x^2\)
H_2 = H_10 if w3 = w4 = ... = w10 = 0
Regression with Constraint
\(H_2\) : 第三项到第10项为零的十次多项式。
\(H_2^{'}\) : 任意三项为零的十次多项式。 \(\sum_{q=0}^{10} (if \ \ w_q \neq 0) \le 3\)
sparse hypothesis: 多个 w 为 0
将 \(min_{w \in \mathbb{R}^{10+1}} E_{in} (w)\), 但任意三项为零是个 NP-Hard 问题,因此试着提出 H(C): \(\Vert{w}\Vert \le C \Rightarrow \sum_{q=0}^{10} w_q^2 \le C\)
\[H(0) \subset H(1.126) \subset ... \subset H(1126) \subset ... \subset H( \infty ) = H_{10}\]Regularized hypothesis \(w_{REG}\) : optimal solution from regularized hypothesis set H(C)