问题: 多久可以搜集到所有种类的扭蛋玩具?
问: 有 N 种扭蛋玩具,每次随机获得一件玩具;多久可以搜集到所有种类的玩具?
Find expected time T
\(T_1\) : time until 1st new toy.
\(T_2\) : the addtional time until 2nd new toy.
\(T_3\) : the addtional time until 3rd new toy.
\[T = T_1 + T_2 + T_3 + \cdots + T_N
\\
\begin{cases}
T_1 & = & \ 1
\\
T_2 - 1 & \sim & \ Geom(\frac{n-1}{n})
\\
T_3 - 1 & \sim & \ Geom(\frac{n-2}{n})
\\
... & &
\\
T_j - 1 & \sim & \ Geom(\frac{n-(j-1)}{n})
\end{cases}\]
* T_x - 1, 减一因为我们使用0开始的 Geom convention。
\[\begin{align}
E(T) & = E(T_1) + E(T_2) + E(T_3) + ... + E(T_n) \\
& = 1 + \frac{n}{n-1} + \frac{n}{n-2} + ... + \frac{n}{1} \\
& = n ( 1 + 1/2 + 1/3 + ... + 1/n ) \\
& \approx n \log n \mathsf{\text{ ,for large n}}
\end{align}\]
Universality
\[X \sim F \mathsf{\text{, F is CDF of r.v. X}} \\
F(x_0) = \frac{1}{3} \\
\begin{align}
P ( F(X) \le \frac{1}{3} ) & = ? \\
& = P ( X \le x_0 ) \\
& = F ( x_0 ) \\
& = \frac{1}{3}
\end{align}\]
Logistic distribution