System of linear equation

General system of m equations in n variables (unknown) over a field F

\[a_{11} x_1 + a_{12} x_2 + ... + a_{1n} x_n = b_1 \\ a_{21} x_1 + a_{22} x_2 + ... + a_{2n} x_n = b_2 \\ ... \\ a_{m1} x_1 + a_{m2} x_2 + ... + a_{mn} x_n = b_m\]

can also be described by :

\[\sum_{j=1}^n a_{ij} x_j = b_{i}, for \ i = 1, 2, ..., m.\]

or by a m x n coefficient matrix A

\[Ax = b \\ x = \begin{pmatrix} x_1 \\ x_2 \\ ... \\ x_n \end{pmatrix} , b = \begin{pmatrix} b_1 \\ b_2 \\ ... \\ b_m \end{pmatrix}\]

Augmented matrix : let A be the coefficient matrix of m linear equations in n variables, the augmented matrix is the m x (n+1) matrix given in the block form as [A | b]

Gaussian elimination

\[\begin{align} x_1 - x_2 + 2 x_3 = & 3 \\ 3 x_1 + 2 x_2 - x_3 = & 1 \\ x_2 + 4 x_3 = & -1 \\ \end{align} \Rightarrow \left[\begin{array}{rrr|r} 1 & -1 & 2 & 3 \\ 3 & 2 & -1 & 1 \\ 0 & 1 & 4 & -1 \\ \end{array}\right] \Rightarrow \left[\begin{array}{rrr|r} 1 & -1 & 2 & 3 \\ 0 & 5 & -7 & -8 \\ 0 & 1 & 4 & -1 \\ \end{array}\right] \\ \Rightarrow \left[\begin{array}{rrr|r} 1 & -1 & 2 & 3 \\ 0 & 1 & 4 & -1 \\ 0 & 5 & -7 & -8 \\ \end{array}\right] \Rightarrow \left[\begin{array}{rrr|r} 1 & -1 & 2 & 3 \\ 0 & 1 & 4 & -1 \\ 0 & 0 & -27 & -3 \\ \end{array}\right] \\ \Rightarrow \left[\begin{array}{rrr|r} 1 & 0 & 0 & 12/9 \\ 0 & 1 & 0 & -13/9 \\ 0 & 0 & 1 & 1/9 \\ \end{array}\right] \Rightarrow x_1 = 12/9, x_2 = -13/9, x_3 = 1/9\]

Row operations

elementary row operation :

  • Multiplying any row by a non-zero scalar.
  • Interchanging two rows.
  • Adding a scalar multiple of one row to another.

row equivalent :

If an m × n matrix A can be changed to matrix B by a sequence of row operations, then B is row equivalent to A.

notation: B ~ A

elementary matrix :

Perform one row operation on Identity Matrix.

\[\begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix} , \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} , \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}\]

Observe effects of multiply by elementary matrix:

\[\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} = \begin{bmatrix} a_{11} + aa_{21} & a_{12} + aa_{22} & a_{13} + aa_{23} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \\ \begin{bmatrix} 1 & 0 \\ a & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} + aa_{11} & a_{22} + aa_{12} & a_{23} + aa_{13} \end{bmatrix} \\ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} = \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \end{bmatrix} \\ \begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} = \begin{bmatrix} aa_{11} & aa_{12} & aa_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}\]

Row reduction

row echelon matrix

\[\begin{bmatrix} 1 & * & * & 0 & * & * & 0 \ldots \\ 0 & 0 & 0 & 1 & * & * & 0 \ldots \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \ldots \end{bmatrix}\]
  • All non-zero rows are above any zero row.
  • leading entry in a non-zero row is in a column to the right of the leading entry in any row above it.
  • All the entries in the column below a leading entry are zero.

A row echelon matrix is further said to be a reduced row echelon matrix, provided it satisfies two more conditions:

  • The leading entry in each non-zero row is 1.
  • The leading entry is the only non-zero entry in the column containing the leading entry.

The leading entry of a non-zero row of a matrix in an echelon is called a pivot.


Example of row reduction :

\[3 x_2 + 9 x_3 + 6 x_5 = -3 \\ -2 x_1 + 4 x_2 + 6 x_3 - 4 x_4 = -2 \\ 4 x_1 - 11 x_2 - 18 x_3 + 2 x_4 - 3 x_5 = 10 \\ \left[\begin{array}{rrrrr|r} 0 & 3 & 9 & 0 & 6 & -3 \\ -2 & 4 & 6 & -4 & 0 & -2 \\ 4 & -11 & -18 & 2 & -3 & 10 \end{array}\right], \\ \left[\begin{array}{rrrrr|r} -2 & 4 & 6 & -4 & 0 & -2 \\ 0 & 3 & 9 & 0 & 6 & -3 \\ 4 & -11 & -18 & 2 & -3 & 10 \end{array}\right], R_1 \Leftrightarrow R_2 \\ \left[\begin{array}{rrrrr|r} -2 & 4 & 6 & -4 & 0 & -2 \\ 0 & 3 & 9 & 0 & 6 & -3 \\ 0 & -3 & -6 & -6 & -3 & 6 \end{array}\right], R_3' = 2 R_1 + R_3 \\ \left[\begin{array}{rrrrr|r} -2 & 4 & 6 & -4 & 0 & -2 \\ 0 & 3 & 9 & 0 & 6 & -3 \\ 0 & 0 & 3 & -6 & 3 & 3 \end{array}\right], R_3' = R_2 + R_3 \\ \left[\begin{array}{rrrrr|r} 1 & -2 & -3 & 2 & 0 & 1 \\ 0 & 1 & 3 & 0 & 2 & -1 \\ 0 & 0 & 1 & -2 & 1 & 1 \end{array}\right], \\ \left[\begin{array}{rrrrr|r} 1 & -2 & 0 & -4 & 3 & 4 \\ 0 & 1 & 0 & 6 & -1 & -4 \\ 0 & 0 & 1 & -2 & 1 & 1 \end{array}\right], \\ \left[\begin{array}{rrrrr|r} 1 & 0 & 0 & 8 & 1 & -4 \\ 0 & 1 & 0 & 6 & -1 & -4 \\ 0 & 0 & 1 & -2 & 1 & 1 \end{array}\right]\]

transform to:

\[x_1 + 8 x_4 + x_5 = -4 \\ x_2 + 6 x_4 - x_5 = -4 \\ x_3 - 2 x_4 + x_5 = 1 \\\]

any solution satisfy:

\[x_5 = a \\ x_4 = b \\ x_3 = 1 - a + 2b \\ x_2 = -4 + a - 6b \\ x_1 = -4 - a - 8b\]

Invertible Matrices

A matrix A is invertible if and only if its reduced row echelon form is the identity matrix

Apply elementary row operations to the block matrix [A|I] so as to reduce A to its reduced row echelon form. If A is row-equivalent to I, then A is invertible, and [A|I] is row equivalent to [I|A^-1]. Otherwise, A is not invertible.

Find the inverse of A:

\[A = \begin{bmatrix} 2 & -2 \\ 4 & 7 \end{bmatrix} \\ [A | I_2] = \left[\begin{array}{rr|rr} 2 & -2 & 1 & 0 \\ 4 & 7 & 0 & 1 \end{array}\right] \\ \sim \left[\begin{array}{rr|rr} 2 & -2 & 1 & 0 \\ 0 & 11 & -2 & 1 \end{array}\right] \\ \sim \left[\begin{array}{rr|rr} 1 & -1 & 1/2 & 0 \\ 0 & 1 & -2/11& 1/11 \end{array}\right] \\ \sim \left[\begin{array}{rr|rr} 1 & 0 & 7/22 & 1/11 \\ 0 & 1 & -2/11& 1/11 \end{array}\right] \\\]

Determinant

\[\det A = a_{11} \det A_{11} - a_{12} \det A_{12} \cdots \pm a_{1n} \det A_{1n}\]

Find the determinant:

\[\det \begin{bmatrix} 2 & 0 & -3 \\ -1 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix} = 2 \cdot \det \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} - 0 \cdot \det \begin{bmatrix} -1 & 0 \\ 2 & 1 \end{bmatrix} + (-3) \cdot \det \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix} \\ = 2 \cdot 1 - 0 \cdot (-1) - 3 \cdot (-1) \\ = 2 - 0 + 3 \\ = 5\]