VC Dimension

the formal name of Maximum Non-Break Point

Def.

VC dimension of H, denoted dvc(H) is largest N for which mH(N)=2N

the most inputs H that can shatter

dvc = ‘minimum k’ - 1

if N2,dvc2,mH(N)Ndvc

dvc is the maximum that mH(N)=2N

dvc(H) : powerfulness of H


Penalty for Model Complexity

P[|Ein(g)Eout(g)|>ϵ]4(2N)dvc exp(18ϵ2N)=δδ=4(2N)dvc exp(18ϵ2N)δ4(2N)dvc=exp(18ϵ2N)ln(4(2N)dvcδ)=18ϵ2N8Nln(4(2N)dvcδ)=ϵ

gen. error

|Ein(g)Eout(g)|8Nln(4(2N)dvcδ)Eout(g)Ein(g)+8Nln(4(2N)dvcδ)

penalty for Model Complexity : 8Nln(4(2N)dvcδ)=Ω(N,H,δ)


Target Distribution P(y|x)

unknown target distribution P(y|x) containing f(x) + noise


Error Measure

{P(y=1|x)=0.2P(y=2|x)=0.7P(y=3|x)=0.1}

0/1 error :

err(ˆy,y)=[ˆyy]

correct or incorrect ?

often for classification

ˆy={1avg.err=0.82avg.err=0.33avg.err=0.91.9avg.err=1.0}

squared error :

err(ˆy,y)=(ˆyy)2

how far is ^y from y ?

often for regression

ˆy={1avg.err=1.12avg.err=0.33avg.err=1.51.9avg.err=0.29()}f(x)=yYy P(y|x)

Algorithmic Error Measure : ^err


Weighted Pocket Algorithm