Discrete Continuous
R.V. X X
PMF/PDF P(X=x) PDF $ f_x(x) = F_x’(x) $
CDF $ F_x(x) = P(X \le x) $ $ F_x(x) = P(X \le x) $
E(X) $ E(X) = \sum_x x \times P(X=x) $ $ E(X) = \int_{-\infty}^{\infty} x \times f_x(x) d_x $
Variance $ Var(X) = E(X^2) - (EX)^2 $ $ Var(X) = E(X^2) - (EX)^2 $
LOTUS $ E g(X) = \sum_x g(x) P(X=x) $ $ E( g(X) ) = \int_{-\infty}^{\infty} g(x) f_x(x) d_x $

PDF: Probability density function Defn: a random variable X has PDF f(x) if \(P(a \le X \le b) = \int_{a}^{b} f(x) d_x\) PDF 不是機率,將PDF進行 a~b 區間的積分後,才是 a~b 發生的機率。

PDF to be valid, \(f(x) \ge 0, \int_{-\infty}^{\infty} f(x) d_x = 1\)

\[f(x_0) \times \epsilon \approx P\left( X \in ( x_0 - \frac{\epsilon}{2}, x_0 + \frac{\epsilon}{2} ) \right) \\ for\ \epsilon > 0 \ very \ small\]

CDF

If X has PDF f, the CDF is: $ F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) \ d_t $

If X has CDF F (and X is cont. r.v.), then PDF is: $ f(x) = F’(x) $

FTC : Fundamental Theorem of Calculus F’(x) = f(x)

\[P( a \le x \le b ) = \int_{a}^{b} f(x) d_x = F(b) - F(a)\]

Variance Var(X)

Var(X) 變異數 : 觀測值於平均值之間偏差值的平方的平均;用來量測 資料分散的程度 : $ Var(X) = E(X - EX)^2 $ 因為偏差值加總為零;所以先將偏差值平方,再加總就不為零,再開根號取平方根 還原本來的單位。即為標準差 S.D.

S.D. - Standard deviation: SD(X) = $ \sqrt{Var(X)} $

Another way to express Var:

\[Var(X) \\ = E \left( X^2 - 2X(EX) + (EX)^2 \right) \\ = E(X^2) - 2E(X)E(X) + (EX)^2 \\ = E(X^2) - (EX)^2\]

? How to compute E(X^2) ?

Uniform Distribution : \(X \sim Unif(a,b)\)

interval [a,b] , pick a completely random point in [a,b]

Unif: probability is proportional to length

PDF:

\[f(x) = \begin{cases} c, & if \ a \le x \le b \\ 0, & \text{otherwise} \end{cases} \\ \Rightarrow 1 = \int_{a}^{b} c \ d_x = c = \frac{1}{b-a}\]

CDF:

\[F(x) \\ = \int_{-\infty}^{x} \ f(t) \ d_t \\ = \int_{a}^{x} \ f(t) \ d_t \\ = \begin{cases} 0, & if \ x < a \\ \frac{x-a}{b-a}, & if \ a \le x \le b \\ 1, & if \ x > b \\ \end{cases}\]

E(X)

\[E(X) \\ = \int_{a}^{b} x f(x) d_x \\ = \int_{a}^{b} \frac{x}{b-a} d_x = \frac{x^2}{2(b-a)} \big|_a^b = \frac{b+a}{2}\]
\[\int_{a}^{b} x^n\,dx = (\frac{1}{n+1}) (x^{n+1}) \big|_a^b = (\frac{1}{n+1})(b^{n+1} - a^{n+1})\]

Variance

\[let \ Y = X^2 \\ E(X^2) = E(Y) \\ = \int_{-\infty}^{\infty} x^2 f_x(x) d_x\]

LOTUS : Law Of The Unconscious Statistician $ E( g(X) ) = \int_{-\infty}^{\infty} g(x) f_x(x) d_x $

Let U be Uniform between 0 and 1,

\[E(u) = 1/2 \\ E(u^2) = \int_{0}^{1} u^2 f_u(u) d_u = 1/3 \\ Var(u) = E(u^2) - (Eu)^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}\]

Function of random variable

X 為 random variable 隨機變數, 而 Y = g(X), 則 Y 也是 random variable.

Y 的 Range $ R_Y = \{ g(x) | x \in R_X \} $;

如果知道 X 的 PMF: $ P_X(x) $, 則 Y 的 PMF 為: $ P_Y(y) = P(Y=y) = P[g(x)=y] = \sum_{x:g(x)=y} P_X(x) $

Example: $ P_X(x=k) = 1/5 $, k = -1,0,1,2,3;若 Y = 2 |X|, 則 Y 的 Range: 0,2,4,6 Y 的 PMF: \(P_Y(y=k) = \begin{cases} 1/5 \ for \ k = 0,4,6 \\ 2/5 \ for \ k = 2 \\ 0 \ for \ \ others \end{cases}\)

LOTUS : Law Of The Unconscious Statistician

X 為 random variable 隨機變數, 而 Y = g(X) X 的 PMF or PDF : $ P_X(x) $

Discrete case :Y 的 Expectation E(Y)

\[EY = E[g(X)] = \sum_{x} g(x) P_X(x)\]

Continuous case :Y 的 Expectation E(Y)

\[EY = E[g(X)] = \int_{-\infty}^{\infty} g(x) P_X(x) d_x\]

Known CDF, 如果已知 X 的 CDF: $ F_X(x) $ 則 Y 的 Expectation E(Y)

\[EY = E[g(X)] = \int_{-\infty}^{\infty} g(x) d F_X(x)\]

Uniform is Universal: let U ~ Unif(0,1), F be a CDF (assume F is strictly incresing and continuous)

Theorem: Let \(X = F^{-1}(u)\), Then X ~ F. (X has CDF F)

Proof: \(P(X \le x) = P( F^{-1} (u) \le x) = P(u \le F(x)) = F(x)\), the length between [0,1]: F(x)


Universality of Unif

Let F be a cont. strictly increasing CDF,

Then \(X = F^{-1}(U) \sim F\) if \(U \sim Unif(0,1)\)

Also: if \(X \sim F\), then \(F(X) \sim Unif(0,1)\)

Example: ( Expo(1) )

\[F(x) = 1 - e^{-x}, x > 0 \\ F(X) = 1 - e^{-X} \\ U ~ Unif(0,1) \\ \text{simulate} X ~ F \\ F'(U) = -ln(1-U) \\ 1 - U \sim Unif(0,1)\]

a + bU is Unif on some interval


Indep. of r.v.s

r.v.s \(X_1, X_2, ..., X_n\) are indep. if

\[P(X_1 \le x_1, ..., X_n \le x_n) = P(X_1 \le x_1) \times ... \times P(X_n \le x_n)\]

This is joint CDF

for all x_1, …, x_n

Descrete case :

\[P(X_1 = x_1, ..., X_n = x_n) = P( X_1 = x_1) \times ... \times P( X_n = x_n)\]

This is joint PMF

Example pairwise indep. does’nt imply indep.

X1, X2 ~ Bern(p)。 iid, X3 = 1 if X1 = X2, X3 = 0 otherwise. X1, X2 是兩次不同的投擲硬幣正面或反面結果;X3為1如果兩次相同,否則X3為0 這些是兩兩獨立, 但是非獨立。 case 1: 知道X1, 但X2仍是 0 / 1 一半一半機率 - X1 vs X2 為獨立 case 2: 知道X1, 但X3仍是 0 / 1 一半一半機率 - X1 vs X3 為獨立 case 3: 知道X1 & X2 即可確定X3 - X1,X2 vs X3 為 非獨立

Normal (Gaussian) Distribution

CLT (Central Limit Theorem): Sum of a lot of i.i.d. r.v. looks like a Normal Distribution

N(0,1) : Notation means MEAN is 0, and VARIANCE is 1.

N(0,1) has PDF: \(f(z) = c \ e^{\frac{-z^2}{2}}\)

  • z: using z as convention for Normal
  • c: normalizing constant to make the area 1

Question: c = ?

\[\int_{-\infty}^{\infty} e^{\frac{-z^2}{2}} d_z \\ \begin{align} \int_{-\infty}^{\infty} e^{\frac{-z^2}{2}} d_z \int_{-\infty}^{\infty} e^{\frac{-z^2}{2}} d_z & = \int_{-\infty}^{\infty} e^{\frac{-x^2}{2}} d_x \int_{-\infty}^{\infty} e^{\frac{-y^2}{2}} d_y \\ & = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{\frac{-(x^2+y^2)}{2}} d_x \ d_y \\ & = \int_{0}^{2\pi} \int_{0}^{\infty} e^{\frac{-r^2}{2}} \ r \ d_r \ d_\theta \\ & = \int_{0}^{2\pi} \left( \int_{0}^{\infty} e^{-u} \ d_u \right) d_\theta \\ & = \int_{0}^{2\pi} \left( 1 \right) d_\theta \\ & = 2\pi \end{align}\] \[\int_{-\infty}^{\infty} e^{\frac{-z^2}{2}} d_z = \sqrt{2\pi} \\ c = \frac{1}{\sqrt{2\pi}}\]

r^2 = x^2 + y^2 Pythagorean theorem

multiply by jacobian ? let u=r^2/2, du=rdr

Mean :

\[E \sim N(0,1), EZ = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} Z \ e^{\frac{-z^2}{2}} d_z = 0 \\\]

by symmetry if g(x) is an odd function, i.e., g(-x) = - g(x) then \(\int_{-a}^{a} g(x) d_x = 0\) Odd function

Variance

\[Var(Z) = E(X^2) - (EZ)^2 = E(Z^2) \\ = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} Z^2 \ e^{\frac{-z^2}{2}} d_z \\ = \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} Z \ Z \ e^{\frac{-z^2}{2}} d_z \\ = \frac{2}{\sqrt{2\pi}} \left( (uv)\big|_0^\infty + \int_0^\infty e^{-Z^2/2} d_z \right) , (uv)\big|_0^\infty = 0 \\ = 1\]

LOTUS even function integration by parts \(u = z, d_u = d_z, d_v = Z \ e^{\frac{-z^2}{2}} d_z \Rightarrow v = - e^{-z^2 / 2}\)

Notation: \(\Phi\) is the Standard Normal CDF

\[\Phi(Z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{Z} e^{-t^2 /2} d_t \\ \Phi(-Z) = 1 - \Phi(Z)\]

3rd Moment:

\[E(Z^3) = 0 \\ \int_{-\infty}^{\infty} Z^3 \ e^{-Z^2/2} \ d_Z , \ \text{is odd function}\]
\[Z \sim N(0,1), CDF \ \Phi, E(Z) = 0, Var(Z)=E(Z^2)=1, E(Z^3) = 0 \\ -Z \sim N(0,1) \\\]