Basic
Properties of Indefinite Integral
\[\int 2 f(x) dx = 2 \int f(x) dx\]
\[\int[f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx\]
\[\int (x^3+x^2+x) dx = \int x^3 dx + \int x^2 dx + \int x dx = \frac{x^4}{4} + \frac{x^3}{3} + \frac{x^2}{2} + C\]
Common indefinite integrals
\[\int \frac{1}{x} dx = \ln{|x|} + c\]
\[\int 0 dx = c\]
\[\int 2 dx = 2x + c\]
\[\int x^a dx = \frac{x{a+1}}{a+1} + c, a \neq -1\]
\[\int e^x dx = e^x + c\]
\[\int a^x dx = \frac{a^x}{\ln{a}} + c\]
\[\int \cos x dx = \sin x + c\]
\[\int \sin x dx = - \cos x + c\]
\[\int \tan x dx = \ln | \sec x | + c\]
\[\int \sec^2x\,dx = \tan x + c\]
\[\int \cot x dx = \ln | \sin x | + c\]
\[\int \big[ u(x) + v(x) \big] dx = \int u(x)\,dx + \int v(x)\,dx\]
Definite integrals
\[\int_{a}^{b} f'(x) dx = f(b) - f(a)\]
\[F(x) \big|_{a}^{b} = F(b) - F(a)\]
\[\int_{a}^{b} x^n\,dx = (\frac{1}{n+1}) (x^{n+1}) \big|_a^b = (\frac{1}{n+1})(b^{n+1} - a^{n+1})\]
\[\int_a^b Cf(x)\,dx = C \int_a^b f(x)\,dx\]
\[\int_a^b [f(x) + g(x)]\,dx = \int_a^b f(x)\,dx + \int_a^b g(x)\,dx\]