Calculus - Derivative
Definition of derivative
exponential and logarithm functions
Chain Rule
F'(x) = f' \left( g(x) \right) g'(x)L’Hospital’s Rule
\text{在以下状况中: (a可为real number, 正负infinity) } \\ \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0} \text{ 或 } \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\pm \infty}{\pm \infty} \\ \text{可得} \\ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}Derivatives of Functions
-
Add and Subtract Derivatives of Functions
(f+g)' = f' + g' \frac{d}{dx}[f(x)-g(x)] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x) -
Derivatives of Products and Powers of Functions
(fg)' = f'g + fg' -
Derivatives of Quotients of Functions
(\frac{f}{g})' = \frac{f'g - fg'}{g^2} -
The Chain Rule for Differentiating Complicated Functions
\frac{d}{dx}f(u(x)) = \frac{d}{du}f(u) \times \frac{d}{dx}u(x) -
for a Point(x,y)
Point(x,y), x=f(t), y=g(t) \frac{dy}{dx} = \frac{dy}{dt}\frac{dt}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}
Derivatives of six trig functions
base Facts
\lim_{\theta \rightarrow 0} \frac{\sin \theta}{\theta} = 1 \\ \lim_{\theta \rightarrow 0} \frac{\cos \theta - 1}{\theta} = 0derivatives for 6 trigonometry:
\begin{align} \frac{d}{dx} \sin(x) & = & & \cos(x) \\ \frac{d}{dx} \cos(x) & = & - & \sin(x) \\ \frac{d}{dx} \tan(x) & = & & \sec^2(x) \\ \frac{d}{dx} \cot(x) & = & - & \csc^2(x) \\ \frac{d}{dx} \sec(x) & = & & \sec(x) \ tan(x) \\ \frac{d}{dx} \csc(x) & = & - & \csc(x) \ cot(x) \end{align}